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SIGNIFICANCE AND EXPLANATION

In applications there arise nonlinear partial differential equations
which change type at points where the solution takes on certain values.
Examples are heat flow with a temperature dependent conductivity and the flow
of a gas through a porous medium. Only in recent years has there been
developed a fairly broaé theory which permits one to prove existence of
solutions to such equations. These solutions are defined in a generalized or
weak sense, and it is not kncwn, a priori, whether the solution has the
derivatives appearing in the equation in a classical sense. In general, one
is interested in knowing what smoothness or regularity properties the solution
possesses.

In this paper we study the solutions to a certain class of such singular
equations where the solution is required to satisfy given initial and boundary
conditions. The principal result is that the solution is continuous at
interior points of its domain of definition. As a by product of the

techniques used here, we obtain a new proof of the existence of such

solutions. In the case of unbounded space domains some of the existence

results so obtained are new.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EXISTENCE AND REGULARITY OF SOLUTIONS OF
INHOMOGENEGUS POROUS MEDIUM TYPE EQUATIONS

Paul Sacks
SECTION 0.

In this paper we will discuss some regularity results for partial Aifferential
equations of Aegenerate parabolic type, The model equation to have in mind is the porous
medium equation

v, = 8™ = Tem™ o) (xet) @ 2 x (0,m) (0.1,
For m # 1 the equation is singular or changes type at any point where the solution
vanishes, hence the standard quasilinear regularity theory [14] may not be applied
directly.

We will define a notion of weak solution for an initial and houndary value problem
associated with an equation of the type 0.1 and then prove interior continuitv of these
solutions. There are basically two approaches to a problem of this sort; the first is to
assume that one has a given weak solution, and then to derive estimates for this function
Airectly from the definition of weak solution by choosing test functions in the right way.
This method is used by DiBenedetto [11], [18] to prove the regularity of weak solutions of
a wide rlass of equatinns, including 0.1, under some additional assumptions (e.q.
boundedness) not required by the definition of solution.

The second approach, which is the one to be used here, is to regularize the problem in
some way so that it falls under the classical quasilinear existence and reqularity

theories; these approximate solutions are shown to converge to a solution of the oriainal

e
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boundedness) not required by the definition of solution.

The second approach, which is the one to be used here, is to regularize the problem in
some way so that it falls under the classical quasilinear existence and reqularity
theories; these approximate solutions are shown to converqge to a solution of the oriainal
problem. A priori estimates are derived for the approximations which then remain valid for
their limit function. Using this method we have an existence theorem as a byv-nrodur+; if
we have a uninqueness theorem, which is often the case, then we may say that the weak
solution of the initial and boundary value problem is continuous.

caffarelli and Friedman ({A), [7]) study the Cauchy problem for the eauation .1 with

m > 1t and non-neaative initial data by replacing the initial data v, (xy »v

Sponsored by the linited States Armvy under Contract No. DAAG29-80-0041, Thig mitertal 1s
bhagsed unon work supported by the National Science Foundation under irant Nos. MT578-01745

and MCSA0-N2944,

e



VOC(X) = vo(x) + €. It follows from the maximum principle that the corresponding
solutions vﬁ(x,t) satisfy vE(x,t) » ¢ so that the equation never degenerates, and
furthermore that the sequence vr(x,t) converges monotonically downwards to a limit
function v{x,r*). An estimate due to Aronson and Benilan (1], which is special to this
problem, is then employed to obtain estimates on ve(x,t) independently of «.

In the paper [5), Caffarelli and Evans outline a more general method; in this case the
equation itself is reqularized with 0.1 being replaced by

v, = vettm™ ' x eyvv) .

Specifically, they prove the fol'.wing.

Let Q be bounded in RN with smooth boundary. Let ¢{(v) be a ct nondecreasing

function on R which "looks like" lvlmsign v for m> 1, (this will be made precise

later) and suppose ¢(v0(xJ) e C;(E). Then the problem

v, = Al ¢lv)) {x,t) e Q x (0,T)
v(x,0) = vo(x) x e 9
vix,t) =0 x € 39

has a unique solution vi(x,t) e C(QT).

In this paper we prove analogous results for the inhomogeneous eruation, and we
consider also the case of unbounded domains.

In (15) corresnonding results will be discussed for other type of nonlinearities, and
different initial and boundary conditions. Reqularity up to the boundary will alsn he
digrn=sed there.

Tie methods employed here are principmally those of (5], combined with techniques which
mav be found, for example, in [14).

T would like to thank M. Pierre, E. DiBenedetto, and especially M. Crandall.

tintation:
6= x (n,T) o gl
5, = M x [0,T)

7




= ST U (2 x {t =0}) 4if Q 1is a cylinder in (x,t) space. (This i3 the

parabolic boundary of Q). Otherwise this is the usual boundary.
|Al = Lebesgue measure of the set A,

{v > k} = gset of points where v > k.

N+1 2 .

Q (R) = {(x,t) e R : Ix - x| <R, t, -~ R <t <t }. The subscript x_,t

xo’to 0 0 0 [V ]

may be dropned if it is clear from the context.

+
f = max(0,f).

%, M = gradient and laplacian in the space variables only.
C(QT) = continuous functions on gT.
D'(QT) = distributions on Q.

1,0, . 2 . 2
WL = flwe oy ¢ e Liien)

1,1 1.0 ?.
w = W H L D .

Q) = {ne Q.1+ u @ Opl}
¢ ® 2 2 1
VR < {u: sup mulx,en + 1T <@} =L (0, T;L(D)) N LTO,TiH (D).
0gt<T L Q) L (QT)

A zero over any of these spaces indicates those functions which vanish on

N Jf,

. . i
summation convention is used, e.g. (fi‘x = ; F (x,t).
i i=1 i

SECTION 1.

We consider the following initiil and boundary value problem

fﬁ(u)1t= M+ F (x,t) e o,
ulx,0) = un(X) x &
ul =0

S

N
where 2 1is a boun.led Adowain in R with smooth boundary.
We first descrihe the assumptinonsg to be made or un(x), F and 9.,

©
H1) uo(x; erL (N

- 3=

S The

T

(1.4
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For the purpose of stating the hypothesis on F we introduce some more notation.

' - 2 P
Gp(QT) (rep (QT) : F = f0 + (fi)xi,fo,fi erL (QT)}

o) + LPeo,mw " Pia .

G is a Banach space with the norm

N
= j f H = + .
IFl mf{nfou + _{ B F=f (£, }

Now we define a subset of Cp whose members have a certain approximation property.
A 1 —
G ( = {Feag : there exists F e c( and A < = satisfyin
s Q) { p(QT) e e G Q) ying

i F i G 0
(i) FC» in p(Q,l,) as € »

(ii) "FeaG ' "GEnG <A
P p

(iii) PFor any Q' cc Qrr there exists 50 > 0 depending only on dist(Q',agT) such

that IFEI <G, in Q' for ¢ < eo.)
Let us denote by (F)p the smallest constant A which works in the above definition.
H2) F €3G (Q_) for some p > E—t—g.
p T 2
See the remarks following the statement of Theorem 1.1 for some discussion of this
condition.

H3) We assume that B is locally absolutely continuous, B8(7) = 0, and that there exist

functinns u1(-),u2(~) such that

(i) R'{s) > u1(M) >0 for s & (-M,M]
s 1 1
(ii) b sy > u2(6) >0 for s @ [- 3 -8y (5,50 5> 00
-1
where 4 = g8 ',
We will say that a function = @ VZ(QT) is a solution of the initial and boundary
value problem 1.1 if there oxistas v f L1(QT), vix,t) = f{ulx,t)) a.~. such that




ff (Vo = Tue¥y + €4 = £y ddxdt + i Buy(x)) §(x,0)dx = 0 (1.2

QT i 2

for every Y@ E = {y e C1(6T) t P(x,t) =0 for x €@ 3 or t = T}.
Theorem 1.1. Under assumptions H!, H2 and H3 the problem 1.1 has a solution
u e L“(QT) [} C(QT). The solution is unique in the class of bounded functions. The norm
fut - depends only on
L (QT)

N, Iaf, T, bu t . AFQ

Pr u, e, u ()
L 1 2

Gp(QT)

The modulus of continuity of u at a point separated from BQT by a distance 4

depends only on

N, nud , (F) v, p,l*), u(s), a.
17Q,) P ! 2

Remarks. (i) The condition H3 on B includes the case of the porous medium equation,

1

MS)=|ﬂmme m> 1.

(ii) 1In the case of quasilinear, non-degenerate, parabolic problems of the type 1.1,

+
one obtains bounded continuous solutions for F @ Gp(QT), p > E—E—g, [14]). We expect

that this is true for 1.1 also, but the present proof requires the stronger assumption that

. + +
F e Gp(QT), p > v 3 2, G, contains P and also Gp’ the positive distributions

belonging to Gp. To see this, let Fe = JE.F where JE is a standard mollifier.

Whenever F = f_+ (f ) we may define €_,f, to be zero outside QT' so that this
0 i x [V §

i
definition makes sense. For the case F € Lp(QT), Fe + F in Lp and
ll’-‘e| < JE*IFI H Ge » |F] in 1P by standard theory. 1In this case (F)p = §Fil n For
L
+ »
he ca F = - + o = + . Again, i .
the se F € GP(QT), ¢ (Je fo) (JE Fi’xi fne (fic)xi gain fOc > f0 in L
£ + £ in sz so that F + F in G . Also, for e < dist(x,t),3Q_), F > 0. we
ie i € =] T €
may therefore take G = F and (F) = (Ff_ .
€ € p Gp
As an example, let Q = (~1,1) in R1 and
f1(x,t) = 0 x <0
1 x >0
-5
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Then F = (fl)x = Go(x), a mass concentrated on the surface {x =0, 0 < t < T} which is

a positive distribution belonging to Gm(QT). More generally, if fi(xi""’xN) is non-

decreasing in Xy then F = (fi) is a positive distribution.
i

Another type of sufficient condition that H2 be satisfied is the following. Suppose

1 +
FeL (QT) and |F| = (gi)x for some choice of q, e sz, p> ﬂ_E_E' that is
2p ~1,2p
IFl e L7 (0, T)iw (2)). It follows that F belongs to the same space, F = (fi)x
2 N + 2 i
for some f1 e L p' P> - > Extending by zero and mollifying as before we have
F = *el = ] G
| Cf f(fie)xif <J€J l (qiE/xi c 1

for ¢ € dist((x,t),BQT). In this case Fe + F, Ge + |F] in G and (F)p = IlFIﬂG .

1
More generally we could assume that F € L (QT) and |F - fOI = (g )x ¢ 9, € sz, for
i
P N + 2 _ 1 1 . 1
some f0 eL’, p»> — As an example, let Q = (- 3¢ 3) in R and
-1 - 39 - Sign x ©
Fix,t) = . Then |F}| = % where gi(x,t) Toqlx]" Here g € L (QT) and

x 1og2|x|
FeL (QT) but to no other Lp space.

kiii) For the proof of uniqueness see page 499 of [14] where the proof of the
corresponding assertion for the Stefan problem is given. This method requires that
3 = 8—1 be locally Lipschitz and this follows from hypothesis H3. A uniqueness result
under less restrictive conditions on ¢ may be found in [8).

(iv) FExistence resnlts for problem 1.1 are provided by nonlinear semigroup

theory {2!', [10]. The problem is rewritten as an abstract initial value problem

v, + Av = f
t
v({0) = Y
where v : [n,T} » X, X 1is some Banach space of functions, A 1is a nonlinear operator
in X, € : 0, T] » X andl v_ e X. The boundary condition is incorporated into the

0

definition of A. I[f this operator satisfies certain conditions then it may be shown that

1
this problem has a solution v @ C{0,T:X) if f @ L (0,T:X) and v _€ D(A). 1In our case

0
rrr operator A corresponds to the expression "~A(¢{v))"; good choices for X are
: -1 ; b
Ty and H O . The pranfs that the corresnonding onerators satisfy the conditions of

*he ahstract existence thearem may he found in {41 and [3] respectively. See alsn [9] for

-
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N 2 -1
the case 2 = R . If we asgsume that f € L(0,T : H (f})) then it can be shown that there

exists a solution v € C(G,T : H¢1(Q)) which also satisfies g% e LZ(O,T H H-1(Q)) and
u = $({vy e L2(0,T s H;(Q)); see [3]. Finally u also satisfies the equation 1.1 in the
sense of distributionsg.

{v) The method of the proof of Theorem 1.1 is to obtain appropriate estimates on a
sequence of functions which are then shown to converge to a solution of the integral
equation 1.2. Setting v = B(u), the equation 1.1 becomes formally

vtsA(¢(v))+F (1.3)

We consider a regularized version of 1.3

v, = A(¢n(v) + gv) + Fe(x,t) (1.4) (n,e)
v(x,0) = voe(x)
v =0
Sp

1f ¢n' Fe' v

o are smooth enough, ¢; > 0, this problem has a classical solution
nve(x,t). The function nue(x,t) = ¢n(“v€(x,t)) then satisgfies
(Bn(u)]t = Alu + csn(u)) + Fe (1.5) (n,¢€)

u(x,0) = bn(voe(x))

where Bn = ¢;‘. Therefore nuc’ ny€ together satisfy
[[ vy - Vu + ev)-Vy + F gldxdat + [ v_ (x)y(x,0)dx = 0 {1.6) (n,e)
QT t € Q Oe

for ¢y € E.

If we let Fe + F, VOe > vo, Qn + ¢ we hope to obtain a limit function

ulx,t) = lim (1im "u€(x,t))
£+0 n-+o

which satisfies 1.1.

Do n e
To prove such a result we must have varions a prinri bounds on the functions u and

n €

o 1
v . It is relatively easy to ohtain bounds in the spaces L (OT) and w '

1
(OT), and

-7~

N‘N

-t
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sequence of functions which are then shown to converge to a solution of the integral
equation 1.2. Setting v = B(u), the equation 1.1 becomes formally

vtsA(¢(v))+F (1.3)

We consider a regularized version of 1.3

v, = A(¢n(v) + gv) + Fe(x,t) (1.4) (n,e)
v(x,0) = voe(x)
v =0
Sp

1f ¢n' Fe' v

o are smooth enough, ¢; > 0, this problem has a classical solution
nve(x,t). The function nue(x,t) = ¢n(“v€(x,t)) then satisgfies
(Bn(u)]t = Alu + csn(u)) + Fe (1.5) (n,¢€)

u(x,0) = bn(voe(x))

where Bn = ¢;‘. Therefore nuc’ ny€ together satisfy
[[ vy - Vu + ev)-Vy + F gldxdat + [ v_ (x)y(x,0)dx = 0 {1.6) (n,e)
QT t € Q Oe

for ¢y € E.

If we let Fe + F, VOe > vo, Qn + ¢ we hope to obtain a limit function

ulx,t) = lim (1im "u€(x,t))
£+0 n-+o

which satisfies 1.1.

Do n e
To prove such a result we must have varions a prinri bounds on the functions u and

n €

o 1
v . It is relatively easy to ohtain bounds in the spaces L (OT) and w '

1
(OT), and
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this will be done in the next section. Furthermore, by a theorem due to Nash et. al., we

may estimate the modulus of continuity of My and nv€ for fixed € > 0, independently
€ N O € ., n_€ ;
of n. These bounds allow us to define u = lim 'u and v = lim v satisfying 1.6
n-+% n-+o

with ¢n replaced by ¢. 1In the remainder of the proof we will estimate the modulus of
continuity of the functions us. Attention will be focused first on a point (xo,to) e QT
where the solution vanishes. We construct a sequence of nested cylinders Q(Rk) with top
center (xo,to) which shrink to the point (xo,to), and a sequence Mk + 0, such that

ﬁui< ™M on Q(Rk). The sequences My and Rk do not depend on €. This may then be

k
used in conjuntion with the above mentioned theorem of Nash to prove the equicontinuity of
€
the sequence u .
Ir the concluding sections some extension of the theorem will be mentioned. 1) The
res t remains true for certain unbounded domains. 2) The spaces LP appearing in
hypothesis H2 may be replaced by spaces

Yo, = L3an

for certain values of r and g.

SECTION 2.
The equation 1.4 (n,¢) may be written in divergence form.

v, = Ye({$'(v) + €)%v) + F (x,t) (2.1)
t n €

| B o
If we let FE ac (QT), v e co(n) and on e Cw(l), ¢é > 0, then results from

Oe

Chapter V, Section 6 of {14] guarantee the existence of a classical solution of

1.4 (n,c). We now specify further properties of v

oe’ € n
{i) We have VO z G(uo) e Lm by the hypotheses. Pick vOc e C:(ﬁ; such that
2
i . L 4 .
Vnr *» v0 in LT(Q) We may assume that Iv0€n - € lvol o an nvneu 5 < nvon 2
L L L L
(ii) Let F = f + (f ) where f and f are the functions assumed to
€ Ne ie % Oe ie

i
exist in H2, Let A = (F)p.

(iii) By mollification of ¢ we obtain a sequence g\ e Cm(l) satisfyina
4 (N, =n, gn' > 0, and an * 4 uniformly on bounded sets of R. Let 2 = & | The
n I n "

conditions (i) and (i1i) of H3 may be assumed to hold uniformly in n for

-8=
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3 and 3 . Bn is a function and Bn + 8 pointwise and uniformly on any set

1
{- = -G! U [6, 3}, § > 0. Note finally that pointwise bounds on gn and °n may he

derived from knowledge of u,(-) and uz(-) only.

The following will be considered the data of the problem 1.1

N, lﬂll T, fu_ B
0 ©
L ()

P, (F)p from H2 (2.2)

u1(-), uz(-) from H3

First we state some lemmas which will be used in the proofs.

Lemma 2.1. There exists a constant C depending only on N such that

N + 2

i (5-=—=)
Q20 N ey

< Clul
V2(QT)

for u e GZ(QT). (See pages 74-75 of (14].)
Lemma 2.2. Let Jm be a sequence of nonnegative numbers satisfying
1+b [

m
J
m 1 < K1(K2) Jm

r
-2
1

O | =
o

Then 1lim Jm = 0 provided JO < k1 k2 (See page 95 of [141).
m-wo

lemma 2.3. Suppose u : [0,w) + [0,o) is nonincreasing and there exist constants

cC >0, a>0, R>1 and k0 2 0 such that

uth) « — [u(k)]8 for h > k » k

th - x)° 0

aB 1
-1 =1
: Then u(d + k) =0 for d = [cu(ko)S 128719, (see 112) p. 63.)

It will now be shown that all solutions of problems 1.4 andi 1.5 are brunded hv «ome

constant independently of n and €. We will use the followinag notation: 1If wv{x,t) is







using Holder's inequality, so that

'r r 2N+4 N+4
v - 0h? wea. << J g2axat + (f b 1N axae)?) (2.0
2057) 0 A (t) 0 A (€)
It follows that
+.2 2 ! '% 2, 't Ni2 - ;2?
- + .
v - k) 1 (832 <cuf 1, utk) VEQ 1 u(k) ) (2.7)
L N
2 1 1 1
N+2 1- ;—) r- P

2 P 2
<cluf b+ ulkg) lfolp)u(x) Cutk)

Now let h > k » ko.

N N
— T P
- 0%um™ = - 0?(f e e tae)™?
0
T Ne2y N
< [ we-wt N Taxae)¥?
0 A (t)
N+2 N
T 2( —
<(f v -t axar )N
] hk(t>
]
<cuky P by (2.7)
Therefore
= (1 - IyN22
N4+2 8= (1 p)(N > 1

e 8
uln) < ¢ Ntk
N+2

th-0* =255
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T T+

%f (g-tj(v-k)*zdx)dc+] i a v v dxdt <
0 a 0 Agcer
T L
[ lv 1€ daxde + [ [ 1€ 1(v - k) axde <
0 A (L) i 0 Q
™ T T i
§ 2 2 + 1
5[ Ivwl“axae + ¢ [ | taxar + [ [ £ (v - %) axae
0 A(t) 0 A (t) ]
N
where £ - Z £2 .
1
i=1
This implies
Tt
[ vix, %) - 0 2ax + ] Jietv - 0" 12axae <
2 0 Q
™ T
o(f [ Paxar+ [ [I1f1(v -0 axde) .
0 AlE) 0 Q
Taking the supremum over T* € [0,T] we have
T T
v - k)*lé oy <l taxar + [ 1£,1tv = 1 Taxat) (2.5)
2% 0 A (t) 0 Q

+
Since k > ko, (v - ky e GZ(QT) SO we may uSe Lemma 2.1,

+ 2 +,2
v =~ k) 1 <cltv = x) |
N+2 v, ()
L2
T , T .
<c(f [ flaxdt + [ [{£ (v - k) dxdt)
0 A () 0Q
T T 2N+ N+4
<ruv-wt? e[ ] fPaxae s ([ ] g ) Maxae)™?
L2057 0 A (t) 0 A (t)




By lemma 2.3

n+2 a8 1 L
Wd+ kg) =0 for 4= (cC u(k0)8-128-1)°— Cu(ko)N+2 e
That is
S . I
vix, ) <k o+ cue NP (2.8)
Remark. A similar estimate holds for =-v(x,t), depending un

Flox,e) @ QL s vix,te) <€ - kothe
Corqliarz 2.1. There exist constants Cy and C2 depending only on the data 2.2, such

that |vix,t)] < ¢C and |u(x,t)| < C, where v 1is any solution of 1.4 and u is any

1 2
solution of 1.S5.
Proof. Choose ko = lvonLm so that v'&QT < ko. We take aij(x,t,v) = (¢;(v) + E)dij in
2
’ . Al x
the proposition, so that aij(x,t V)Eicj > uz(ko)lﬁl for J|v| » ko Also ul o) € IQTI

so that |v(x,t)| < C1 where C1 depends only on quantities measured by the data 2.2.
If u is a solution of 1.4 then Ju(x,t)| < ¢n(c1), and again this may be estimated by a
constant C2 which depends only on the data.
Corollary 2.2. Suppose the hypotheses of Proposition 2.1 hold with ix,t) = 0,
2
a ot wEE > 8lElT 850

for all x,t,v, and

(1]
-E.*.Z)
2p 2
Then |v(x,t)] < CR where C depends on N, p, ufoﬂp,ﬂfiﬂp and 6.
+
Proof. 1In the proposition we take k4, = 0 and u(0) = [Q(R)| = CRN 2. The conclusion

then follows from 2.8.//
Remark. The above estimate remains valid if it is assumed only that v e V2(QT) n C(ET),
and this will bhe used later. See p. 181 of [14].

We turn now to estimates of first order derivatives of solutions of 1.4 and 1.5. We

assume that vix,t) 1is a solution of 1.4 (n,e) and u{x,t} 1is a solution of 1.5 (n,c).
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Proposition 2.2.

(1) 19vi < C(eg,data)
L (Q.)

(2) vl < C{data)
L (QT)

Proof. For the proof of (1), multiply 1.4 (n,e) by v and integrate over QT‘

[f at (% vz)dth + [f Lo tw) + e)IVv|2dxdt

% %

< ff £,V xat - [ fievxidxdt .

Therefore
2 1 2
e [[ Iwl%axde < 5 [ vg ax + gy 0 v
Qn Q L L
€ 2 1 2
+5 [[ 1wl axae + 2 /f £ dxdt
Or T
Thus

1 2
eann22 < nvo u22 + 2uf0 M 1IIle -t e nfeﬂ 1
L €L L
We have already estimated vl

L
estimated by a constant depending on (F‘)p and 19].

in terms of the data and If, 1 _, nfzu , may be
Je L € L’

Therefore (1) is valid.
For the proof of (2) we multiply 1.5 (n,c) by
x

B(x) = f sBA(s)ds. We then get
0

u and integrate over QT. Set

[f |9ul 2axdt < 2 [ BUS (v, (x)))dx + 20E & _tun _ + T
n Og 0e 1 © e 1
2 Q L L L

Now |B(x)| < xen(x) so that

2
|B(¢n(v0€(x)))| < '°n(voe(x))||voe(x’| < C|v0€(x)|

Thus the right hand side is hounded by a constant depending only on the data, as before.//

Remark. Similar estimates may be obtained for u, and vy by multiplying the equations

1.4 and 1.5 by (u + ev)t. Both estimates degenerate as ¢ + 0 is general; however if

-14~
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2
elgl” < 246 Ej

Iai,u © < C(data)
Ty Q)

All guanties occurring in Theorem 2.1 for this case are given in terms of the data, 4,
and €, thus 2.9 holds. Since {@n} are uniformly Lipschitz on bounded intervals 2.10
holds.//

Remark. Theorem 2.1 remains true if the equation contains lower order terms satisfying
certain integrability conditions. Aalso, if the initial and boundary values are smooth
enough the solution will be Holder continuous on ET. For a precise statement see Chapter
I1I, Section 10 of {14]. See also {12] pages 62-76 for the elliptic case.

Using the results of Corollary 2.1, Proposition 2.2 and Corollary 2.3 we may find a

n,
subsequence n, + ® and limit functions ue(x,t) and vs(x,t) so that kuc +ua,

n k
k € €
v

n
+ v~ uniformly on compact sets, V uf s Vue, v kve

> Vve weakly in LZ(QT).

Since ¢n + ¢ uniformly on bounded sets, ue(x,t) = ¢(v€(x,t)) in QT.
k
Now multiply equation 1.4 (nk,e) by ¢ € E and replace ¢n (v) by u.
k

Kk e "% e "k e
[f( TvFe, = 9 Tu® o+ e vt )ewy + £V - fiswxi)dxdt

+ [ v, (x)p(x,0)dx = 0
Q

Now letting nk + © we have

If (vsu,t - v+ v vy + fo ¥ = £y 4, Jaxat
1

B

(2.11)

+ é Vo (XWX, 00ax = 0 .

The function vc(x,t) satisfies
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Fe Lz(QT) and uo(x) 1s smooth enough then actually lutl 2 ¢ C independently of
L (QT)
€.
It is also possible to estimate the modulus of continuity of solutions of the equation
1.4 (n,e) for fixed € > 0. This follows from the following important theorem which will

also play a role later in the proof.

Theorem 2.1. Let v(x,t} be a solution of the linear equation

Ve (aijvx by = fo + (fi)x (x,t) € Qp
3 71 i
where 6|E|2 <a, .t E ba, < 1 §> 0.
i3°1°3° i3 = 8
L (Q))
T
2 P N + 2
fo,fi €L (QT) p> 3
and let vl < c1. Suppose Q' cC Qr with dist(Q .BQT) > d. :

L (Q,r)

Then v 1is Holder continuous in Q'.

The Holder exponent a depends only on N, § and p, while the norm v} a
cHQ")

2
8, p, Ifolp, neE; and d.

depends only on N, C i"p

1!

Corollary 2.3. Let Q' cCC QT with dist(Q',BQT) > d. Let v be the solution of

1.4 (n,e) and u be the solution of 1.5 (n,eg). Then

v < C(g,d,data) (2.9
c%o)

flul < C(g,d,data) (2.10)
c®o")

The exponent « depends on £ and the data.

Proof. v(x,t) satisfies the linear equation

with (x,t) = (¢;(v(x,t)) + E)Gij, so that

aij




<
[

Ald(v) + ev) + Fe(x,t)

)

vix,0) v (x)

O¢ (2.12) (¢)

SECTION 3.

Following [5] we now examine the behaviour of solutions near the points where they
vanish. Ultimately, of course, we must show that the solution is small in a neighborhood
of such a point; here it will first be shown that a kind of smallness property holds in an
average sense. This is the main nonlinear ingredient in the proof of Theorem 1.1. The
desired result follows as a corollary from the next proposition, which states that if a
solution is close enough, on the average, to its maximum in some cylinder, then it is
pointwise greater than half maximum on a smaller cylinder with the same vertex.
Proposition 3.1. Let u be a classical solution in Q(R) C Op of the equation

{B(u)], = Alu + cBlu)) + £_+ (f, ) (3.1)
t i"x

0 i

2
i

N + 2

1
3 B satisfies H3) and also R €@ C (®). Let

where fo,f e Lp(QT) for p >

u < C2 in Q. and

0 < max u < M < C2
Q(R)

Then there exist constants o, > O, po > 0 depending only on

0
N, C (C)s w0 N, a2y (3.2)
¢ Cor u1 2t Uz r P 0 p: i'e .
guch that if
—_ [ ™~ udxdt < Mpo
QR %
Q(R)
then
M R
u 2 7 in Q(z) .
35235. C will denote any congtant depending only or N, C2, u1(C?)r U,(‘)- Recall that

poiltwisze estimates of 7(s) Jepend only on the function “v("'
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Set w=M - u s0 that

T - = - - - - .
8'(M w)wc Alw eB(M w)) fo (fi)xi (3.3)
Let ((x,t) be a smooth test function, 0 € 7 <1 and ¢ =0 near 3Q(R). Let

2

0 <k <M. We multiply 3.3 by (w - k)+( and integrate over

B(x,,R) x (t = R2,t0 -R% 4+ t*) for t* e [0,R%].

[] 8 (M= ww (w - K" 2axat [f 9w - eBtM = w))¥((w - k) %) axat

[f €500 = k) cPaxat

+ 2
+ [l -7 )xidxdt
=1+ II + III

lzczdxdt

-
L}
'

[f 19w = 0¥ 12 Paxae - e [f B - w VW - 0"

2¢ [[ (98 - w) T g(w - k) Taxar - 2 [ (Ww - 0 evnziw - k) axat

+

<=2 v -0 Paar + o ff (v - 10 P g 2axae

+

2¢ [[ (VB(M ~ w) PO g(w - k) Tdxdt

1 = [f czfi(w - k): axat + 2 [[ glw - k)+fi;x dxat
i i

< % [f 19w - 013 axae + [] (w - k2 vg) Paxae

2

N
v2 ff 2Paxar £ = _51 £
i=

{w>k}
Thus
+ 2 1 +2 2
[ 8 M = ww (w - ) g%axae + 5 [[ 19w = k)71 g axde
+
<o ff -0 veiaxde ¢ [ 1e 17w - 6 Taxae
+2 [f £2%axat + 2¢ [f (980 = w) e90)gw - k) axat (3.4)
{wok}
To estimate the last term on the right in 3.4 we integrate by parts once more.

+ +
- 2 [[ BIM - wygVgeT(w - k) dxdt - 2¢ [[ BM - w)(w = k) Ve(£Virdxdt (3.5)

1 2
<3 [] 19w - 0 122 axae + ¢ [f (1771° + 1AZ]) dxdt
{wak }nsuppt
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To estimate the first term

r
on the left in 3.4, define B(r) = [ B'(M - k - s)sds, so

0
that a +
@ ar B(w - k)+ = B' (M - w)(w - k) w

t
We have
+
(w-k) uy +2
B{w - k) > Y, f sds = 'S (w = k) uy = u1(C2)
+
+ s vk +
B(w - k) < (w =~ k) [ B*(M -~ k - s)ds < Clw - k)
0
Therefore
[] 8 (M = wtw - k)+;2wtdxdt = B{w ~ k)+c2l dx
B(xo,R) t=t*
-2 ff Btw - 1t gz axae
t
4 +2 2 +
> 5 [ (w - %) “¢°l ax - ¢ [[ (w - k) loz, laxat (3.6)
B(XO,R) t=t*

Combining 3.4, 3.5 and 3.6 we obtain

/ (w - k)+§2‘ ax + [[ 1w - k)*lzgzdxdt
B(xo,R) t=t*

<c [f (1vzl? + Jag) + 1g haxac
{wk} suppz

s o [f gl = 0 Paxat + ¢ [f £ 2axat
{w>k}nsuppg

Now, in the second term on the left the integrand may be replaced by

+ .2
|9(glw -~ k) )1°, since the error made may he estimated by terms of the form already

appearing on the right side of 3.7. 1If we now take the supremum of the left side over

t*t e [O,R2] we obtain the estimate
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Set w=M - u s0 that

T - = - - - - .
8'(M w)wc Alw eB(M w)) fo (fi)xi (3.3)
Let ((x,t) be a smooth test function, 0 € 7 <1 and ¢ =0 near 3Q(R). Let

2

0 <k <M. We multiply 3.3 by (w - k)+( and integrate over

B(x,,R) x (t = R2,t0 -R% 4+ t*) for t* e [0,R%].

[] 8 (M= ww (w - K" 2axat [f 9w - eBtM = w))¥((w - k) %) axat

[f €500 = k) cPaxat

+ 2
+ [l -7 )xidxdt
=1+ II + III

lzczdxdt

-
L}
'

[f 19w = 0¥ 12 Paxae - e [f B - w VW - 0"

2¢ [[ (98 - w) T g(w - k) Taxar - 2 [ (Ww - 0 evnziw - k) axat

+

<=2 v -0 Paar + o ff (v - 10 P g 2axae

+

2¢ [[ (VB(M ~ w) PO g(w - k) Tdxdt

1 = [f czfi(w - k): axat + 2 [[ glw - k)+fi;x dxat
i i

< % [f 19w - 013 axae + [] (w - k2 vg) Paxae

2

N
v2 ff 2Paxar £ = _51 £
i=

{w>k}
Thus
+ 2 1 +2 2
[ 8 M = ww (w - ) g%axae + 5 [[ 19w = k)71 g axde
+
<o ff -0 veiaxde ¢ [ 1e 17w - 6 Taxae
+2 [f £2%axat + 2¢ [f (980 = w) e90)gw - k) axat (3.4)
{wok}
To estimate the last term on the right in 3.4 we integrate by parts once more.

+ +
- 2 [[ BIM - wygVgeT(w - k) dxdt - 2¢ [[ BM - w)(w = k) Ve(£Virdxdt (3.5)

1 2
<3 [] 19w - 0 122 axae + ¢ [f (1771° + 1AZ]) dxdt
{wak }nsuppt
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2

lo(w - '

v, (Q(R))

<C [

{w>k}usuppg

vo Jfoae e - 0" Paxae

(I'J;I2 + |Iagl o+ lgtl + fz)dxdt

(3.8)

(3.9)

Q(R)
+
Since g(w - k) € GZ(Q(R)) we may use Lemma 2.1 to get
+ 2 2
Ig(w = k) 47 L < C [f (19212 + 18l + le |+ £5axat
—E—) {w>k }nsupp(
L
(Q(R))
2N+4 N+4
+cl ] I N*4 axar N2
{wak} suppg
This inequality will now be iterated on a sequence of shrinking cylinders. Set
k =93 (1 - 1—] R =R (1 + l~), = Q({R_). Choose smooth test functions g (x,t)
m 2 m’’ m 2 o % m m
such that 0 < %n <1, ﬁ: =1 on Qm+1, Cm = 0 near an, and
2 ca .
lvﬁ“’ :IACm|:|Cm+'| < Rz . Define
1 +
3 = [[ (w = %) Zaxat .
mo 1yl 0 m
m
We will show that {Jm} satisfies the hypotheses of Lemma 2.2. It will follow that if
Jo = TE%ETT ff (M - u)zdxdt is small enough then ff [% - u)*zdxdt =0 i.e.
Q(R) Q(B)
2
M R
w2z on Q(Z).
wWe have
N+
+2( Nz) N:Z Nfz
1913 4y € (I tw=x dxde )" Tl L, 0w > kL
m+1
205 Gl i
-~ ' al 1 n
(I twmk ixdt) 19 OISR (3,10
Qm+1
=20~
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v i > 3.9 wi = . = r ¢ [o} = .
we now use the estimate 3 with k km+1 4 o and  Q(K) Qm
+2(N;2] N§2 + Z(N;?.’
(] tw=-x%_0 axdt ) <M ltw=-x_ ¢ dxde
Q' mt+1 é' m+ 1 m
m+1 m
2 2
<c I8 (og 17+ lag |+ 1g |+ £)dxae
Q ri{wdk } m
ol m+1
2N+4 N+4
N+4 N+
+ cf [ gyt Tlaxae M - 1 e
an{w>km+1)
+
U, -
+ ) n
i <cf(a'r e np,er {w >k 3
N+4 _ 2 y 22
2 N+2 o} 2 P
< ] 8 >k <C | N {w >
fr1} leo plQm {w m+1}l (‘IlfOIPIQm w km+1}|
Therefore
*
N+2 m sz . 2 2 A
o £ + ) N
ROTT oy € {4 R ol »p fonp})Qm {w > ka}I
Also
. +2 2 -
- b - 1
[ tw ko Taxde > (k- kTR {w >k H
Qm
so that
N+2 m
CrR "4
A
lQm fw> km+1}’ < 2 Jm
M
Using this in 3.11 we ohtain
Nr2 5 2 .
- N+2 m ey -
. )
I « —— (4™ P vouf v a2y B4
m+ 1 M2 pt 2 m
R M

-21-
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R

also implies that the net power of

2 1 .
Let b1 SN+ 3" B > 0. The condition on p
Thus, finally

appearing on the right side is nonnegative.

m
2 2 64 1
J < C(1 + 0f + e — J =k _(k J
m+ 1 ( ﬂp o p) (1+b1) m 1( 2) m
M
It follows that Jm + 0 provided
1
-3
J<kb1k b1: Mpo =2+ =
0 1 2 Y Po b,
%
letting a, = , we see that if
0 2C
2
»
1 0
——— [ (M - urdxdt < oM
R J ! o’
10(R) ] olR)

M R
then u >3 in Q(E)' /7

It follows from this result that if the solution is zero at the vertex of some



2 1

Let b1 = rearacii B > 0. The condition on p also implies that the net power of R

appearing on the right side is nonnegative. Thus, finally

2 2 64m 1+h1 1*h1
< 1+ + — =k, (k
Jm+1 c( nf np Hfoﬂp) (1+b1) Jm 1( 2) Jm
M
It follows that Jm + 0 provided
S5
J<kb1k b1: Mpo =2+ =
0 1 2 Y Pq b,
%
letting a, = , we see that if
0 2C
2
»
1 0
——— [ (M - urdxdt < oM
R J ! o’
10(R) ] olR)
M R
then u >3 in Q(E)' /7

It follows from this result that if the solution is zero at the vertex of some
cylinder then it must be bounded away from its positive maximum on some fixed fraction of

the cylinder.

Corollary 3.1. Let u be the solution of 1.5 (n,¢) or else u = u® = 1im nuc_ Let
M ne+@
Q(R) = Qx t (R) < QT, u(xo,tn' < 3, and 0 ¢ max u <M g PZ.

(V"] Q(R)
Then there exist constants pO,B‘,y1 depending only on the data and C_ such that

Py Pq
1Q(R) ™ {u <M - MG M [Q(R) 1 . (3.12

Proof. If u solves 1.5 (n,e) then u satisfies the conditions of Proposition 3.1, hence

. ; X : n € .
it also satisfies the conclusions of the proposition. Since u o+ uC uniformly the same

is true for u®. The constants a and p, are independent of n and «¢.




Choose ¢ and Y, s© that 2C28‘ + vy, < @, and suppose that 3,12 fails. Then

1 1

[/ M- wdxdt = If (M - u)dxdt
Q(R) Py
Q(R)n{u(M-y1M }

+ If p (M- wdxat

Q(R)n{u>M-—y1M 0}

Thus

P p
” (M - u)dxdt < 2C2|Q(R) N {u <M - YoM 0}| + oYM 0lQlR)I
Q(R)

Py Py
< (20,8, 4 v, M THQURy] < agM 1Q(R)

By Proposition 3.1

: M

u(xo,to) » min ui({x,t) > 3
R
2(3)

a contradiction.//

SECTION 4.

Due to the special structure of equation 1.1, the solution u(x,t) is related to a
subsolution of a certain non-degenerate linear equation. This fact allows us to exploit

known results from the linear theory.

. 1,1 © e
We will say that a function w e W ' (QT) satisfies wt - (aiij )x < Gix,t) in

3 i
QT if
ftw v+ a, w § daxdt < [] ciaxde
; t iy x, x, A
o 3 0,
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3 i
QT if
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; t iy x, x, A
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+
Proposition 4.1. Let vix,t) be the solution of 1.4 (n,e) and z(x,t) = [v(x,t) - 7!
where Yy > 0. Then there exists § > 0 depending only on y and the data such that

z, € Velalx,t)%z) + JFCI (4.1,

for some function al{x,t) satisfying

§ < alx,t) < % . (4.2)

1
Proof. Clearly =z € w” (QT). Choose a sequence qk e Cm(k) satisfying

0 < qi(s) <1, q;ls) >0, qk(s) =0 for s < %, and qk(sl + [s - Y1+ uniformly on

R. Set zk(x,t) = qk(v(x,t)).

We have
z - Ve ' + <
(Z 0, = Vellor vy €192, ) fFEJ (4.3
pointwise in Qp. Set
alx,t) = ¢;(v(x,t)) + € vix,t) > %
L] 1 l
¢n(2) + € vix,t) < 3
Clearly 4.2 is satisfied for some § > 0 depending only on Yy and the data. Using the
= = . Xy
fact that (zk)t Vzk 0 a.e. on v < 7 it follows that

If ((z,) ¥ + alx,t)Tz, T} dxdt

Op

= ! . ! .
!/ (2 ) ¢+ (9UV(x,t)) + €)Vz, «Tyjdxdt
{1}

[ -~ Te((g’
[f Gz =~ 7et0ol(v) + €17z 1) yaxdt

2

< ff IFelwdxdt by 4.3

B

°1,
if pew 0(QT), Y » 0. Letting k + © we get

[[ (zpv + alx,0) V2o axat < [[ IF_|ydxde

% %

Thus 4.1 holds.//




M

Remarks. (i) %g e Lm(Q'J for any Q' "C QT by our construction. This will be used
later,

(ii) Tt is the presence of IFEE inastead of FC in this differential 1nequality
which causes the complications in the condition on F.

Next we state a modification of a result due to Kruzkov {13], which says that pogirt:ive
supersolutions of linear, non-degenerate, divergence form equations have the property rthat
if they are greater than one on a certain fraction 2f a rylinder Q(R), then *-ov are
bounded below by a positive constant Cq On some subrylindter 72(R')., A resnlt -¢ X .g
nature is the essential step in a proof of Theorem 2.1.

1,1 s
Proposition 4.2. Let w & W ' (Q(R)) > CIQ(Ry) satisfy

(1) wt - (aiij_)x >0 in Q(RrR)

(ii) w > 0 in Q(R)

(iii) There exists 82 > N such that

12(R) ~ {w » 1} > g, 1Ry !

Then there is a constant ¢y > @ dependiing only on N, % and 32 such that

2R

2
wix,t) » CU in Q. 8 .

Remark. This is proved in [13] under the assumpticns that w, - ‘ai wx \ = N ani
Zerarx t CUx o
1 A \
32 = 5. The extension to supersolutions is immediate, and the 1se nf L f oz i oalsnoar

easy modification of tie proof given there.

o P
Corollary 4.1. Let z € W ' (Q(R)) C(Q(R)) satisfy
1
i z < + G
(i) . (aiizx,)x, in Q(R), G e L (Q(R})
i
1
‘l»’,lz <A Lt 8, la, 4 S o,

15773 i3 Lm y

(ii) z <&M in Q(R), M>nr
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(iti) 1Q(R) N {z < ;)| > 8,10(R)| for some 8, > 0.

Suppose also

(iv) The equation

has a solution 2 € W'' (Q(R)) N C(O(R)).

Then there is a constant €y > 0 depending on N, § and 82 such that

82R
z &M= Mc o+ 2020 in () -
L (Q(R))
Proof. Apply Proposition 4.2 to the function
w=2(m+z+az1 -2z ."
M @

L

We are now prepared to present the main step in the shrinking cylinder argument. Let

and let

Qy = {{x,t) e Qp: dist((x,t),BQT) > d}. Fix d > o, (xo,to) e 9y

Q(R) = Q (R). For the rest of the section we let ¢ <

xo’to so where ¢ is the constant

0
\ 4
corresponding to 2 from H2.

Lemma 4.1. Let v(x,t) be the solution of 2.12 (g) constructed in section 2. Let
; s +
Y, M and 82 be given positive numbers. Put z = (v - y] . Then there are constants

M
g < = such that the

R* and ¢ depending on vy, M, 32 and the data, 0 < R* < ;, 0 < Y

following is true for R < R*.

If (i) z <M in Q(R)

(iiy  [Q(R) N {z = 0} » BZQQ(R)I
then
~ BzR
< - i - .
z <M -0 in @ 3 )
Proof. Let zn = (vn - y]+ where v" is the solution of 1.4 {n,e). Since zn + z

uniformly on Q(R) there is a sequence Mn + M, Mn > M such that 2" < Mn in Q(R).

Also for n large enoudah
n

QR) N {z = 0} = o(R) O {2" < '21} Cor) ~ (2" ¢ “21-)

= 26-
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By Proposition 4.1 we have

(") - Telalx,t)92") < |F | <G
t € €

where § < alx,t) < % and § > 0 depends only on <y and the data.

Let Zz be the solution of
z_ = Vela(x,t)VZ) + G
t €

z -
zlaQ(R) 0
The properties of a(x,t) and GE guarantee the existence of z. We noted earlier that

%f e LQ(Q(R)), and this is enough to ensure that z € w1'1(Q(R)), by Theorem 6.1,

Chapter III of [14]. By Theorem 10.1, Chapter III of [14] Z @ C(Q(R)). By Corollary 2.2

Izl - < E(datu,y,R) .
L (Q(R))
Since also 2z" € w"‘(Q(R)) N C(Q{(R)) we may apply Corollary 4.1, We conclude
B.R
zn < Mn - Mnc0 AT - in Q(—%—)
L (Q(R))

for some constant S depending only on N, y and 82. We now pick R* > 0 such that

- Mc
C(data,y,R*) < T .

This choice depends on vy, M, 82 and the data. Thus, for R < R* we have

R
Mc 82

n n n [V
z €M - Mc 4 — in Q(—g—) .
Letting n + «
Mc R.R
n ~ (2
KM - — =M - — .
z M > g in Q a 77

Remark. This proof could be simplified if it were known that Proposition 4.2 is true
agssuming only w € w1'0(Q(R)). This is done in [15). It is then possible to work directly
with 2z instead of the approximations z",

Proposition 4.3. Llet v be the solution of 2.12 (¢) and u = #(v). Suppose

u(xo,to) =0, (xo,tO) e Qd' Then there exist sequences Mk + 0, Rk + 0 depending only

-7




on d and the data, such that

sup lu(x,t)] <M,
QR )

Proof. Define
P

0
y(M) = B(M - M )

- Po
o(y(M), B(M) = Y(M),B1M )

a(M)

p
0
R* (k) = R¥(y(M),B(M) - Y(M),B1M )

where Y

1’ 81

are the constants from Lemma 4.2. Set

M1 = flul ”
L7
Meoq = B(B(M) = o(M ))
= *
R, = R*(M)
p
0
BaMye Ry

Repq = min(R2m ), ——o—)

and p, are the constants from Corollary 3.1 and E(y,M,82), R‘(y,M,Bz)

Clearly Mk + 0, Rk+ 0. We now show by induction that Jul] < Mj on Qle). This is
clear for j = 1. Assume, then, that
sup Jul M (4.4,
Q(Rk)
+
Set z = (v - y(Mk)] , so that

z < B(Mk) - Y(Mk)

By Corollary 3.1
PO 2}
QR Y N {z = 0} = QR A fu <M - vy M} > 8 M

We may now apply Lemma 4.1 with Yy, M, 82
P

Note that Rk < R'(y(Mv),ﬂ(Mk) - Y(Mk),ﬁ1Mkn]. We conclude that

- 28—

Yo sl
Q k' .

replaced by Y(Mk), G(Mkl - y(Mk) and

»
am .
1™
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p
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P
BTMRORK
R( - () - h i —_—" (4.5
z € BM D .(Mk) G(Wk; in QO 5 ; J
Therefore
v < B(Mk) - d(Mk) in Q(Rk+1l
and so
- M = ) i .
u < o(B(Mk) ol k)) Hk+1 in Q(Rk+1)

The same argument applies to -u, hence 4.4 holds with k replaced by k + 1.//

The content of the last proposition is essentially a modulus of continuity from below
at any point where the solution vanishes. We wish now to examine the behavior of the
solution in the vicinity of a point where it is not zero. The next rnsult states that 1in
some full neighborhood of such a point the solution must be bounded away from zern.

Define

2 2
. = I . - - <
on’to(m {(x,t) : Ix xol < R,to R” < t ty v R }

Proposition 4.4. Let u and v be as in Proposition 4.3 and let {Mk) and {Rk} he the

sequences given there. Let (xn,to) e QZd and suppose

Mk +1 < u(xo.to) < Mk
0 0

for some ko. Put

R

0

R, ~ (R e
Then Mk

u ? ) in ¢° {R ]
2 X

Proof. The proof of Proposition 4.3 would show that u(xn,fnl < sup u <M 0 anless
ol k ta
’*‘}‘k- +1
n

the induction hypotheses fail by the kn'th step. The only way this can hapren is if

5] n
. n 1]
R ‘ { KM - oM R
(el MR < YoM, o<, . 10 W




P
BTMRORK
R( - () - h i —_—" (4.5
z € BM D .(Mk) G(Wk; in QO 5 ; J
Therefore
v < B(Mk) - d(Mk) in Q(Rk+1l
and so
- M = ) i .
u < o(B(Mk) ol k)) Hk+1 in Q(Rk+1)

The same argument applies to -u, hence 4.4 holds with k replaced by k + 1.//

The content of the last proposition is essentially a modulus of continuity from below
at any point where the solution vanishes. We wish now to examine the behavior of the
solution in the vicinity of a point where it is not zero. The next rnsult states that 1in
some full neighborhood of such a point the solution must be bounded away from zern.

Define

2 2
. = I . - - <
on’to(m {(x,t) : Ix xol < R,to R” < t ty v R }

Proposition 4.4. Let u and v be as in Proposition 4.3 and let {Mk) and {Rk} he the

sequences given there. Let (xn,to) e QZd and suppose

Mk +1 < u(xo.to) < Mk
0 0

for some ko. Put

R

0

R, ~ (R e
Then Mk

u ? ) in ¢° {R ]
2 X

Proof. The proof of Proposition 4.3 would show that u(xn,fnl < sup u <M 0 anless
ol k ta
’*‘}‘k- +1
n

the induction hypotheses fail by the kn'th step. The only way this can hapren is if

5] n
. n 1]
R ‘ { KM - oM R
(el MR < YoM, o<, . 10 W




for some k < ko. As in the proof of Corollary 3.1 this implies that u » ;5 in Q(;E).
Therefore u > - in Q(E ) (i.,e. in the backward cylinder with vertex (x_ ,t_)}.
2 ko Mk 0" "0
— L] R i
Now suppose that u(x1,t1) < 5 for some (x1,t1) e Q (Rko) with t1 > to. Note

that (xo,to) e Qx1,t1(Rk0+1) and (x1,t1) e Qd. Again the induction argument of

Proposition 4.3 will work up to the ko'th step, showing that

a contradiction.//

Proposition 4.5. The functions uE(x,t) are equicontinuous on Q for any d > 0,

24

€ E..
€< g

Proof. Fix d > 0, € < eo and n > 0. We must find & > 0 depending only on n,d and

the data such that
€ €
- .6
lutx k) = ut(xg,t ) < on (4.6)
whenever (x1,t1),(x0,t0) e Q2d and

,-t0|<6.

Let L = max(Iue(x‘,t1)|,Iue(xo,to)l). If L g there is nothing to prove, so

assume that

€ n
L = > o,
u (xo,to) 3
(Otherwise apply the same argument to —ue). By Proposition 4.4 uE(x,t) > f on
Q; ¢ (R) where R depends on n,d and the data. On this cylinder ve(x,t) satisfies
0’"0
the linear equation
v, = Velalx,t)Vv) + f + (£, )
t Ng ie %,
i
where a{x,t) = ¢'(vix,t)) + ¢ » @'(8(%)) + €2 9> 0 where & is a constant depending
only on n and the data.
Ry Theorem 2.1 v® is Holder continuous on o N (%, with a modulus of continuity
X
0" "0

depending only on d,n and the data. The rjuantity d in the statement of Theorem 2.1 is

here replaced hy « Since 4 is locally Lipschitz the same is true for ut. Thus we

YL 0

-10)=
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choose § so that § < and then again smaller so that 4.6 is satisfied, independently

R
2

>f €. //

We may now finish the proof of Theorem 1.1. Since g is uniformly continuons on

[—Cz.C 1, the functions u"  and vc, € < €y are uniformly bounded and equicontinuous

2
on Qd for any d > 0. Thus we may find limit function

%
ulx,t) = lim u (x,t)

ck#o

[

k
vix,t) = lim v (x,t)
ek*O
where the convergence is uniform on compact subsets of QT‘ Clearly vi(x,t) = R(ulx,t))

and v(x,t) and u(x,t) are continuous on QT‘ Also, by Proposition 2.2

Ex 2
Vu + Pu weakly in L (QT)

for some further subsequence.

If yeEN CZ(QT) then equation 2.11 for ¢ = € is

€ € €
fv kWt - % k-Vw + eV kAw + £

2,

dxdt + =0
wx.’ t j vOe wax

v - f,
% RSt a "%k

Letting k + o gives

- . - { 3 =
ff (v, = TusTy + €9 = £y adxdt + [ v (0 u(x,00ax = 0

QT i 2

This identity remains true for all ¢ @ E. Hence u 1is a solution of 1.1 and
e L7Q) nclg,)
u L QT) QT .
Remark. The modulus of continuity depends on the sequence [Mk} from Proposition 4.3,
which is generated recursivelv according to the rule
M1 PBM ) - aM )
-1
with M1 = ful - ¢ C.. This clearly depends on 8 and 4 = B (along with all the nther

2
L
data), but it remains to be seen that it may be taken tn depend nnly on the functions
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u1 and u2 from H3. Specifically, we must show that there are sequences

Mﬁ + 0, M; + 0 depending only on u‘, uz and the rest of the dJdata, such that

4.7
X k¢ M (4.7
To do this we write

Mk+1 = Mk - p(Mk)
where p(M) =M - ¢(B(M) = o(M)) = $(B(M)) - ¢(B(M) ~ g(M)). We may assume that M - (M)
M
is nondecreasing on [0,C2]; if not, replace o(M}) by o(M;} = % f min{olr), rB'(ry)dr.
0
Then o satisfies 0 < o(M) < o(M), o'{M) < B'(M). Therefore g(M) - o(M) is
nondecreasing.
Next
My, (M)
p(M) > ([ dinf ¢"(s))olm) > [ inf  #'(s))o(M) > u?(T}o(M; 2o, (M)
B(M) My, (M) )
s 2 s>——%———
and
1 1
p(M) < ( sup  ¢'(s)]o(M) = ( sup —————Jo(M) < TTEy OM E o,
S<B(M) S<B(M) B8'(o(s)) Y
Then 91 and p2 are nondecreasing functions of M with p1(0) = 02(0) = 0. Generate

sequences M;, M; by

M= MM o=
1 1M

Meer T M T 90
M;+1 h M; - OZ(M;’

Then 4.7 clearly holds for k = 1; if we assume its validity for some %, then

=M - (M) S M = pMS M - o (MY =
M x TP A A K+ 1

" =M - > MY - " "W o wyoo me
Mk+1 X p(Mk) K D(Mk) > M oz(Mk) Mk+1

k

Thus 4.7 holds for all k which was to he shown.
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SECTION 5.
We turn now to the Caachy prohlem

(8(wmyl, = 2+ F (x,n) @ PT =R <« (7, T) (e

il

u{x,0) u x) x 2 R

n

Ry a solution of 5.1 we mean a function u e Vv {K_) such that there exists

; iR,
2,lnc T

1
verwL c(RT), vix,t) = Blu{x,t)) a.e. satisfying

lo
i (Vg = TueVy e Fono f oy dxdr o i Vo ixowx, 00 ax = 0 5.2,
3 . N
T ! R
o N
for every y € co(m *x [0,T)). Here vo(x) = P(u“(x,; and F hag the form FO T LF <
C i
We retain the assumptions H1 and H3 on un(x) and £. In place of H2 we assume
~ N o+ 2
H4 (i) F e G (R ; > —
(R p 2
(ii) 1f °F =€+ (f ) is the function from the definition of &_, then
€ Ne ie' x, P
1
nfieu p < A for some constant A independent of . Also p » 2.
LR )

Remark. The proof nf Theorem 1.1 is essentially local in nature once we have the global
bounds obtained in Sectinn 2. Thus we must show how these results can be modified for thr
case of an unbounded Aomain so that the remainder of the proof may proceed as before, 7y

1 .
(R ) we mean (F R G (FT): there exists F , G €@ C (R_}) and A < o satisfyina

p T n € € T
(L) F_+F in G (R ) as ¢ » 0
€ p T
(ii) MW M., MG t . < A
£ G [
g P
(iti) For any Q' 7 K_ there exists 1, > 0 such that |[F | <5 in 2 for
n " ¥ I
e < c).} fondition f1i) in H4 is nsed only tn ohtain a global 1 houni; the assumption
that p 2 2 is a restriction only for N — 1. The condition H4 1s saticfied by anv
N o+ 2

|
FerL(r for > —.
( T) jal 3
Theorem 5.1. Iinder assumptions H1, H3 and H4 the problem 5.1 bas a ssiat ion
wer ey ~e )
T T

The norm lul and the modulas of continnity of 1 depend only sn N, T anl oty

LR
(,r)

constants from HY, H3 and #d4.
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Remark. (i) Existence results are known from nonlinear semiqroup theory for the -zase

1 1
FerL (RT). (uo(x)) erLn (RN). One of the earliest existence results for eguations of

this kind is given in Sabinina (161, for the case F = 0, uoix) e Lz(nN, with
uo(x) 2 0. See also [17].
.. N 1, N o N .
(ii) 1If it is assumed that r(uo) e L(R)MNL (R ) then uniqueness follows from
{81. The uniqueness problem is currently under active investigation.

For the proof we study, as before, the regularized problem

= + ) .
ve A(@n(v) Ev) + Fe(x,t) (x,t) € RT (5.3) (n,¢)
vix,0) = v_ (x) x € ]
[ o
and the corresponding problem for u = ﬁn(v)
(B ()] = Alu + ed (W) + F (x,t) (5.4) (n,€)
n t n €
ui{x,0) = ¢n(v05(v))
We choose On and vo€ as in Section 2; in this case vOe > v0 in Lz(n) for any

N
bounded Q C R ., Fc(x,t) is the function frcm H4.

et B = {x : |Ix|l < r} and K =B x (0,T)e Suppose v_(x) =0 for Ix| »>r_ . A
r r r O¢ 0

solution of 5.3 (n,c) may be obtained as the pointwise limit of some subequence of

{Vr}r>r where v satisfies
0
v, = Mo (v) + gv) + F (x,t) (x,t) € X (5.5) (n,e,r)
t n € r
v(x,0) = v (x) x € B
Og r
vix,t) = 0 Ixl = ¢

For a dAiscussion of this, see pages 492-496 of [14}.
We now show that solutions of this problem are uniformly bounded, independently of
n,e and r. The maximum principle of Section 2 relied on the inequality
<
utk,y < 1ol

T

which is obviously of no use here.
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We will use instead the estimate

REd

HUEL 5 %)) <« () (5.6)

which is valid for f e L°(R}).
Proposition S.1. There exists a constant C,4 depending only on the data, such that

lvix,erl <c,

if v is any solution of (5.5) (n,g,r), 1 > £y

Proof. Apply Proposition 2.1 with QT = Kr and k0 = max(1,2Hv0l o)+ We obtain the
L

estimate

vix,t) < C(data,u(ko))

Ea

0

Set k1 = 5 We claim that

.
v - k1) ] < C {(S.7)
Lp(Kr)

where C depends only on the data. If this is done, then it follows from 5.6 that

My ~ %) P

tPx )
r

+
ukg) = 1{v > kol = 1w - k¥ >k :

Thus, vi(x,t) < C1 where C1 depends only on the data. The same is true for -~v(x,t).

+ 1
To verify the claim, we multiply equation 5.5 by p(v - k1) ’p- and integrate over

Br for some fixed t, r > ro.

p-1

+p-1 ' . +
[ plv - % vax + p [ (5(v) + e)TveV({v -~ k) )ydx
1 t ‘. n 1
+p-1 +p-1
f pfog(v k1) Ax f pfiﬁ((v k1) )xidx
Therefore

a - +p _ ' _ +p=2 2
T v ek Pax v plp - 1) [ artvr + ety - k) Il “dx

_ +p=1 _ ¢ _ +p-2
o [, v =% lax + ptp = 1) [ 1E T1ty - %)) v lax
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1 t ‘. n 1
+p-1 +p-1
f pfog(v k1) Ax f pfiﬁ((v k1) )xidx
Therefore

a - +p _ ' _ +p=2 2
T v ek Pax v plp - 1) [ artvr + ety - k) Il “dx

_ +p=1 _ ¢ _ +p-2
o [, v =% lax + ptp = 1) [ 1E T1ty - %)) v lax
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1

plp ~ 1 2 +p-
+ { ) f (v = k) P 2|dx
451 - £ 1

u (k)
. ~ ) . .2
Recall that ¢n(v1 + 02 92(k1) >0 if v o> k1. Choose €y = T Then
4y o ¢ +p-1 plp - ) . 2 +p~2
LI - ‘o -k dx + =L o -
o A 0El(v 1 X ey Ry kg Ax
2 1
<Pl Pax+ (p=1) [ (v -k ) Pa
- ¢ 1
- 1 » - Wp =2 ’ +
+ EL7;~7 f lfclpdx P 2 3 )Ek ! Ttv - k) Pax .
Moty Hy ty!
oy +p .
Set gl(t) = | (vix, t) - k1) dx. We have just shown
B(r)
g'(t) - ag(t) < h(t)
-1 p - Yiip -
where hit) = f | £ (x,t)lpdx + R0 j | £ (x,t;lpdx and q = max[p - 1,( 1p = 21,
Oe by k1) € 2u2(k1)

By hypothesis g(0) = 0. Hence, by Gronwall's inequality

t T
q(t) < e“t f e-ush(s)ds < edT j h{s)ds
g 0
and so
T T
v = ko 17 = [ gttgae < e { his)as
Ln(Kr) 0 0

= reMige Py B2l e ™
fe'p P

which is hounded hy some constant dependinag only on the data.//
Tt now follows that the same estimate holds for solutions ot 5,3 (n,r), ani that
solutinns ~f 5,3 (n,.7 Are algo uniformly hounied,

Next we derive local L? estimates for ‘u nl v,
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(x,t) € RT' As before we have %Vu € LiOC(RTJ and Vu k + W weakly in L2 on any

compact set.

Thus we may pass to the limit in 5.10 through the sequence Ek' which yields 5.2.

Theorem 5.1 is therefore proved.
Remark. This result extends to arbitrary unbounded space domains { as long as there

exists a sequence of subdomains Qn CC Y such that ﬂn has smooth boundary, 2 C L)+1
n n
o«

and Q= U Qn. We specify zero boundary conditions on 3Q x (0,T) as before.
n=1

SECTION 6.

Consider again the case of a bounded domain . In place of the IP conditions on

F we may assume instead conditions involving the spaces Lq’r(QT), where

Lq'r(QT) = {f measurable on Qn : IfN < =}

qrr, Qp

Y
T =

e = (I {1 tex,t01%x)%ae)
WBEL g g Jae)

R

Analogously to the 1P case we define

2 a,r
G = {FeD : P= f o+ (f, . e
q,r(QT) { NS ot ¢ 1)xi foefy €L}
2 : . . . N + 2
and then define Gq r(QT) in the obvious way. The correct generalization of p > P
’ “
1 R
-4+ — <1, r »1 v 1.
is -~ 2q r q
In this section we assume the hypotheses H1 and H3 and that
Feé (o) ¢ L
T el LA -
As before, in the nondegenerate case, it is known that the problem 1.1 has hounded
continuous solutions for F € Gq r(QT) with the same conditinn on the indices r anl 1.
’

For the proof we need a generalization of TLemma 2.1.

Lemma 6.1. There exists a constant C Aepending only an N aach *hgt
flul < Clul, |
AT, Vo0
-39~
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o
for u € vV _(Q_)» provided q,r satisfy

P, T
1 N N
LA
T S
2 a ! 2N : 3

1 8 [2,%] q e NS N .

r /@ (2," qe {2,« N = 2

r e [4,~] a e 2, o N = 1

See pages 74-75 of 141,
Theorem 2.1 remains true with these modified conditions on fq and f}.

The proonf of interior continuity proceeds as in the original case; non-trivial

rodifications are necessary only in Propositions 2.1 and 3.1. We sketch here the remur:ed

changes. Put

P S R 1 R
q r-=1 q -1
2
= 1 + —
P NG

wky = [ 1A (et ae
fn k

The pair (2p,2p9) satisfy the requirements of Lemma 6.1, i.e.
1 N _ N

b =
2pb ap 4

In Proposition 2.1 no change is necessary up to Sgquation 2.5. Then use Lemma %.1 to deriuve

T
2 >
fv - 00 el e
2p. 2pH 0 A it
"
r ot 2
1 ] Ay
¥ O B TR R LT LR
0 Ak(t)

where a prime denntes the usual Holder conjugate exponent. From this it fallows that

f

weny < —tkr no ok kg
th - )"
~40-
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1 B
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for o = &5 a = 2ph; 2> 1 since = +

f - 1, hance Lemra 2.3 anplies as hef reo Ser
r' r 2 !

14!, p. 181 far a slightly different proof in rhe non~deyenerate -ase.

In Proposition 3.1 we may continue as before until line 3.8. Then aga .n we use ‘o

+
&.1 to derive an estimate for fzf{w ~ %) e
2p,2p 6

Define X
1, . 2 0
3= Foiltw ~ k) Tax i ae!
m [E .
G €]
t
0 n
ulk,Qirry = bn (] Tt
MO~R
where
Ak(c) = {x & B(KO,R/ owix,t) » ko
The inequalities
/ N
4 J N~
o o) < / IJO.ILm \
W1 m 2
(km+1 - km) J
/
and
A
+ 2 ot
L Hw - k } uik ,0
!OO|JN*1 <t m+1) p,’ph,Q ul me1 T
m+ 1
are valid. From these we can aqain derive the inequality
1+h
m 1
J kv J
m+ 1 12
with
1 1
b, = —~ + — = 1 >0
1 '.11 Dl
The casas § ¢ 1 and 1 ¢ 1t must he considered spearately.
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Theorem 1.1 remains valid under these conditiaons on v,
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